博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 805 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$ 为随机变量 ( X ) 的概率密度函数。

期望的计算公式为: $$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为: $$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值: $$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示: $$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度: $$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    nodejs生成多层目录和生成文件的通用方法
    查看>>
    nodejs端口被占用原因及解决方案
    查看>>
    Nodejs简介以及Windows上安装Nodejs
    查看>>
    nodejs系列之express
    查看>>
    nodejs系列之Koa2
    查看>>
    Nodejs连接mysql
    查看>>
    nodejs连接mysql
    查看>>
    NodeJs连接Oracle数据库
    查看>>
    nodejs配置express服务器,运行自动打开浏览器
    查看>>
    NodeMCU教程 http请求获取Json中文乱码解决方案
    查看>>
    Nodemon 深入解析与使用
    查看>>
    NodeSession:高效且灵活的Node.js会话管理工具
    查看>>
    node~ http缓存
    查看>>
    node不是内部命令时配置node环境变量
    查看>>
    node中fs模块之文件操作
    查看>>
    Node中同步与异步的方式读取文件
    查看>>
    node中的get请求和post请求的不同操作【node学习第五篇】
    查看>>
    Node中的Http模块和Url模块的使用
    查看>>
    Node中自启动工具supervisor的使用
    查看>>
    Node入门之创建第一个HelloNode
    查看>>