博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    NET Framework安装失败的麻烦
    查看>>
    Net 应用程序如何在32位操作系统下申请超过2G的内存
    查看>>
    Net.Framework概述
    查看>>
    NET3.0+中使软件发出声音[整理篇]<转>
    查看>>
    net::err_aborted 错误码 404
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetAssist网络调试工具使用指南 (附NetAssist工具包)
    查看>>
    Netbeans 8.1启动参数配置
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    NetBeans之JSP开发环境的搭建...
    查看>>
    NetBeans之改变难看的JSP脚本标签的背景色...
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    NetCore 上传,断点续传,可支持流上传
    查看>>
    Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
    查看>>
    Netem功能
    查看>>
    netfilter应用场景
    查看>>
    Netflix:当你按下“播放”的时候发生了什么?
    查看>>
    Netflix推荐系统:从评分预测到消费者法则
    查看>>
    netframework 4.0内置处理JSON对象
    查看>>