博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    mysql 记录的增删改查
    查看>>
    MySQL 设置数据库的隔离级别
    查看>>
    MySQL 证明为什么用limit时,offset很大会影响性能
    查看>>
    Mysql 语句操作索引SQL语句
    查看>>
    MySQL 误操作后数据恢复(update,delete忘加where条件)
    查看>>
    MySQL 调优/优化的 101 个建议!
    查看>>
    mysql 转义字符用法_MySql 转义字符的使用说明
    查看>>
    mysql 输入密码秒退
    查看>>
    mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
    查看>>
    mysql 通过查看mysql 配置参数、状态来优化你的mysql
    查看>>
    mysql 里对root及普通用户赋权及更改密码的一些命令
    查看>>
    Mysql 重置自增列的开始序号
    查看>>
    mysql 锁机制 mvcc_Mysql性能优化-事务、锁和MVCC
    查看>>
    MySQL 错误
    查看>>
    mysql 随机数 rand使用
    查看>>
    MySQL 面试题汇总
    查看>>
    MySQL 面试,必须掌握的 8 大核心点
    查看>>
    MySQL 高可用性之keepalived+mysql双主
    查看>>
    mysql 默认事务隔离级别下锁分析
    查看>>
    Mysql--逻辑架构
    查看>>