博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    MySQL:MySQL执行一条SQL查询语句的执行过程
    查看>>
    Mysql:SQL性能分析
    查看>>
    mysql:SQL按时间查询方法总结
    查看>>
    MySQL:什么样的字段适合加索引?什么样的字段不适合加索引
    查看>>
    MySQL:判断逗号分隔的字符串中是否包含某个字符串
    查看>>
    MySQL:某个ip连接mysql失败次数过多,导致ip锁定
    查看>>
    MySQL:索引失效场景总结
    查看>>
    Mysql:避免重复的插入数据方法汇总
    查看>>
    MyS中的IF
    查看>>
    M_Map工具箱简介及地理图形绘制
    查看>>
    m_Orchestrate learning system---二十二、html代码如何变的容易
    查看>>
    M×N 形状 numpy.ndarray 的滑动窗口
    查看>>
    m个苹果放入n个盘子问题
    查看>>
    n = 3 , while n , continue
    查看>>
    n 叉树后序遍历转换为链表问题的深入探讨
    查看>>
    N!
    查看>>
    N-Gram的基本原理
    查看>>
    n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
    查看>>
    Nacos Client常用配置
    查看>>
    nacos config
    查看>>