博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    mysqldump 导出数据库中每张表的前n条
    查看>>
    mysqldump: Got error: 1044: Access denied for user ‘xx’@’xx’ to database ‘xx’ when using LOCK TABLES
    查看>>
    Mysqldump参数大全(参数来源于mysql5.5.19源码)
    查看>>
    mysqldump备份时忽略某些表
    查看>>
    mysqldump实现数据备份及灾难恢复
    查看>>
    mysqldump数据库备份无法进行操作只能查询 --single-transaction
    查看>>
    mysqldump的一些用法
    查看>>
    mysqli
    查看>>
    MySQLIntegrityConstraintViolationException异常处理
    查看>>
    mysqlreport分析工具详解
    查看>>
    MySQLSyntaxErrorException: Unknown error 1146和SQLSyntaxErrorException: Unknown error 1146
    查看>>
    Mysql_Postgresql中_geometry数据操作_st_astext_GeomFromEWKT函数_在java中转换geometry的16进制数据---PostgreSQL工作笔记007
    查看>>
    mysql_real_connect 参数注意
    查看>>
    mysql_secure_installation初始化数据库报Access denied
    查看>>
    MySQL_西安11月销售昨日未上架的产品_20161212
    查看>>
    Mysql——深入浅出InnoDB底层原理
    查看>>
    MySQL“被动”性能优化汇总
    查看>>
    MySQL、HBase 和 Elasticsearch:特点与区别详解
    查看>>
    MySQL、Redis高频面试题汇总
    查看>>
    MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
    查看>>