博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    MySQL Order By实现原理分析和Filesort优化
    查看>>
    mysql problems
    查看>>
    mysql replace first,MySQL中处理各种重复的一些方法
    查看>>
    MySQL replace函数替换字符串语句的用法(mysql字符串替换)
    查看>>
    Mysql Row_Format 参数讲解
    查看>>
    mysql select, from ,join ,on ,where groupby,having ,order by limit的执行顺序和书写顺序
    查看>>
    MySQL Server 5.5安装记录
    查看>>
    mysql slave 停了_slave 停止。求解决方法
    查看>>
    MySQL SQL 优化指南:主键、ORDER BY、GROUP BY 和 UPDATE 优化详解
    查看>>
    mysql sum 没返回,如果没有找到任何值,我如何在MySQL中获得SUM函数以返回'0'?
    查看>>
    mysql Timestamp时间隔了8小时
    查看>>
    Mysql tinyint(1)与tinyint(4)的区别
    查看>>
    mysql union orderby 无效
    查看>>
    mysql where中如何判断不为空
    查看>>
    mysql workbench6.3.5_MySQL Workbench
    查看>>
    MySQL Workbench安装教程以及菜单汉化
    查看>>
    MySQL Xtrabackup 安装、备份、恢复
    查看>>
    mysql [Err] 1436 - Thread stack overrun: 129464 bytes used of a 286720 byte stack, and 160000 bytes
    查看>>
    MySQL _ MySQL常用操作
    查看>>
    MySQL – 导出数据成csv
    查看>>