博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    Nuget~管理自己的包包
    查看>>
    nullnullHuge Pages
    查看>>
    Numix Core 开源项目教程
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    oauth2-shiro 添加 redis 实现版本
    查看>>
    OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
    查看>>
    OAuth2.0_JWT令牌介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记147
    查看>>
    OAuth2.0_介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记137
    查看>>
    OAuth2.0_完善环境配置_把资源微服务客户端信息_授权码存入到数据库_Spring Security OAuth2.0认证授权---springcloud工作笔记149
    查看>>
    OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
    查看>>