博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
    查看>>
    npm淘宝镜像过期npm ERR! request to https://registry.npm.taobao.org/vuex failed, reason: certificate has ex
    查看>>
    npm版本过高问题
    查看>>
    npm的“--force“和“--legacy-peer-deps“参数
    查看>>
    npm的安装和更新---npm工作笔记002
    查看>>
    npm的常用操作---npm工作笔记003
    查看>>
    npm的常用配置项---npm工作笔记004
    查看>>
    npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
    查看>>
    npm编译报错You may need an additional loader to handle the result of these loaders
    查看>>
    npm设置淘宝镜像、升级等
    查看>>
    npm设置源地址,npm官方地址
    查看>>
    npm设置镜像如淘宝:http://npm.taobao.org/
    查看>>
    npm配置安装最新淘宝镜像,旧镜像会errror
    查看>>
    NPM酷库052:sax,按流解析XML
    查看>>
    npm错误 gyp错误 vs版本不对 msvs_version不兼容
    查看>>
    npm错误Error: Cannot find module ‘postcss-loader‘
    查看>>
    npm,yarn,cnpm 的区别
    查看>>
    NPOI
    查看>>
    NPOI之Excel——合并单元格、设置样式、输入公式
    查看>>
    NPOI初级教程
    查看>>