博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    MySQL日期时间函数大全
    查看>>
    mysql时间相减的问题
    查看>>
    mysql时间表示和计算
    查看>>
    mysql更新一个表里的字段等于另一个表某字段的值
    查看>>
    Mysql更新时间列只改日期为指定日期不更改时间
    查看>>
    MySQL更新锁(for update)摘要
    查看>>
    mysql替换表的字段里面内容
    查看>>
    MySQL最大建议行数 2000w,靠谱吗?
    查看>>
    MySQL有哪些锁
    查看>>
    MySQL服务器安装(Linux)
    查看>>
    mysql服务器查询慢原因分析方法
    查看>>
    mysql服务无法启动的问题
    查看>>
    MySQL杂谈
    查看>>
    mysql权限
    查看>>
    mysql条件查询
    查看>>
    MySQL架构与SQL的执行流程_1
    查看>>
    MySQL架构与SQL的执行流程_2
    查看>>
    MySQL架构介绍
    查看>>
    MySQL架构优化
    查看>>
    MySQL查看数据库相关信息
    查看>>