博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,解决动态域名解析难题
    查看>>
    natapp搭建外网服务器
    查看>>
    NativePHP:使用PHP构建跨平台桌面应用的新框架
    查看>>
    nativescript(angular2)——ListView组件
    查看>>
    NativeWindow_01
    查看>>
    Native方式运行Fabric(非Docker方式)
    查看>>
    Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
    查看>>
    Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
    查看>>
    Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    nat打洞原理和实现
    查看>>
    NAT技术
    查看>>
    NAT模式/路由模式/全路由模式 (转)
    查看>>
    NAT模式下虚拟机centOs和主机ping不通解决方法
    查看>>
    NAT的两种模式SNAT和DNAT,到底有啥区别?
    查看>>
    NAT的全然分析及其UDP穿透的全然解决方式
    查看>>