博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    mysql 快速自增假数据, 新增假数据,mysql自增假数据
    查看>>
    Mysql 报错 Field 'id' doesn't have a default value
    查看>>
    MySQL 报错:Duplicate entry 'xxx' for key 'UNIQ_XXXX'
    查看>>
    Mysql 拼接多个字段作为查询条件查询方法
    查看>>
    mysql 排序id_mysql如何按特定id排序
    查看>>
    Mysql 提示:Communication link failure
    查看>>
    mysql 插入是否成功_PDO mysql:如何知道插入是否成功
    查看>>
    Mysql 数据库InnoDB存储引擎中主要组件的刷新清理条件:脏页、RedoLog重做日志、Insert Buffer或ChangeBuffer、Undo Log
    查看>>
    mysql 数据库备份及ibdata1的瘦身
    查看>>
    MySQL 数据库备份种类以及常用备份工具汇总
    查看>>
    mysql 数据库存储引擎怎么选择?快来看看性能测试吧
    查看>>
    MySQL 数据库操作指南:学习如何使用 Python 进行增删改查操作
    查看>>
    MySQL 数据库的高可用性分析
    查看>>
    MySQL 数据库设计总结
    查看>>
    Mysql 数据库重置ID排序
    查看>>
    Mysql 数据类型一日期
    查看>>
    MySQL 数据类型和属性
    查看>>
    mysql 敲错命令 想取消怎么办?
    查看>>
    Mysql 整形列的字节与存储范围
    查看>>
    mysql 断电数据损坏,无法启动
    查看>>