博客
关于我
采样计算与期望
阅读量:192 次
发布时间:2019-02-28

本文共 799 字,大约阅读时间需要 2 分钟。

连续型随机变量的期望

连续型随机变量的期望是概率密度函数和其自变量的线性组合。其定义如下:

$$ p(x) p(x) $$为随机变量 ( X ) 的概率密度函数。

期望的计算公式为:$$ E[X] = \int x p(x) dx $$

该公式表明,期望值是对所有可能值与其概率密度的乘积进行积分的结果。


离散型随机变量的期望

对于离散型随机变量,其期望的计算公式为:$$ E[X] = \sum_{i} x_i p_i $$

其中,( x_i ) 是离散型随机变量 ( X ) 的第 ( i ) 个取值,( p_i ) 是对应的概率。


采样与期望估计

在实际应用中,直接计算积分可能存在困难。为了解决这一问题,可以采用蒙特卡洛方法进行估计。

具体步骤如下:

  • 从概率密度函数 ( p(x) ) 中随机采样若干点 ( x_0, x_1, \dots, x_n )。
  • 计算这些点的加权平均值:$$ E[X] \approx \frac{1}{n+1} \sum_{i=0}^{n} x_i $$
  • 该方法利用了概率密度函数 ( p(x) ) 的性质,确保每个样本点被选中的概率与其概率密度成比例。


    KL散度的期望形式

    KL散度(Kullback-Leibler divergence)也可以通过期望形式表示:$$ KL(p(x) \parallel q(x)) = \int p(x) \ln \frac{p(x)}{q(x)} dx $$

    其中,( p(x) ) 和 ( q(x) ) 分别为两个概率密度函数。

    利用蒙特卡洛方法,可以估计KL散度:$$ KL(p(x) \parallel q(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{p(x_i)}{q(x_i)} $$

    这种方法在机器学习和信息论中有广泛应用,用于衡量两个概率分布之间的差异。

    转载地址:http://iwrn.baihongyu.com/

    你可能感兴趣的文章
    Mysql 整形列的字节与存储范围
    查看>>
    mysql 断电数据损坏,无法启动
    查看>>
    MySQL 日期时间类型的选择
    查看>>
    Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
    查看>>
    MySQL 是如何加锁的?
    查看>>
    MySQL 是怎样运行的 - InnoDB数据页结构
    查看>>
    mysql 更新子表_mysql 在update中实现子查询的方式
    查看>>
    MySQL 有什么优点?
    查看>>
    mysql 权限整理记录
    查看>>
    mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
    查看>>
    MYSQL 查看最大连接数和修改最大连接数
    查看>>
    MySQL 查看有哪些表
    查看>>
    mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
    查看>>
    MySql 查询以逗号分隔的字符串的方法(正则)
    查看>>
    MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
    查看>>
    mysql 查询数据库所有表的字段信息
    查看>>
    【Java基础】什么是面向对象?
    查看>>
    mysql 查询,正数降序排序,负数升序排序
    查看>>
    MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
    查看>>
    mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
    查看>>